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Abstract— Fully decentralized, safe, and deadlock-free multi-
robot navigation in dynamic, cluttered environments is a critical
challenge in robotics. Current methods require exact state
measurements in order to enforce safety and liveness e.g.
via control barrier functions (CBFs), which is challenging to
achieve directly from onboard sensors like lidars and cameras.
This work introduces LIVEPOINT, a decentralized control
framework that synthesizes universal CBFs over point clouds
to enable safe, deadlock-free real-time multi-robot navigation in
dynamic, cluttered environments. Further, LIVEPOINT ensures
minimally invasive deadlock avoidance behavior by dynamically
adjusting agents’ speeds based on a novel symmetric interaction
metric. We validate our approach in simulation experiments
across highly constrained multi-robot scenarios like door-
ways and intersections. Results demonstrate that LIVEPOINT
achieves zero collisions or deadlocks and a 100% success rate in
challenging settings compared to optimization-based baselines
such as MPC and ORCA and neural methods such as MPNet,
which fail in such environments. Despite prioritizing safety
and liveness, LIVEPOINT is 35% smoother than baselines in
the doorway environment, and maintains agility in constrained
environments while still being safe and deadlock-free.

I. INTRODUCTION
The dream of having robots work with us in our kitchens,

construction sites, and hospitals has driven interest in multi-
robot navigation among autonomous vehicles, warehouse
robots, and personal home robots [1]. Often, these applica-
tions feature small, cluttered environments (such as doorways
or hallways filled with obstacles). Humans naturally and
gracefully navigate these environments, such as by slowing
down by just enough to let another reach the doorway
first [2], [3]. For robots to seamlessly navigate through these
environments, they must learn to navigate like humans–
safely, gracefully, and without getting stuck (deadlock-free).

Conventional wisdom [4], [5], [6], [7] tells us that in order
for robots to achieve human-like mobility in cluttered envi-
ronments, their low-level controllers need exact and accurate
state measurements of their surroundings, which is difficult to
realize. Most roboticists, however, would ideally prefer nav-
igation systems that produce human-like trajectories directly
using input from onboard sensors, without relying on expen-
sive mapping and perception for exact measurements [8]. For
instance, Sa et al. [8] perform point cloud-based single robot
navigation to handle dynamic environments, allowing robots
to react to rapidly changing obstacles.

However, ensuring both safety and liveness using dense
point clouds can be complex [8]. For instance, some an-
alytical methods use control barrier functions (CBFs) [8],
[9] to guarantee safety, which requires intensive computa-
tions to evaluate the barrier function and its derivatives.
Additionally, in decentralized systems, we have no central
authority that can coordinate agents in a manner that resolve
deadlocks. Learning-based methods [10], [11], [12], [13]
can struggle with generalization and lack formal safety
guarantees. Moreover, cluttered environments pose additional
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Fig. 1: Our decentralized approach enables effective, safe, live, and
socially compliant robot navigation in cluttered environments using
only high-dimensional point cloud input.
challenges, particularly due to geometric symmetry in the
environment [14]. Robots lack an inherent mechanism to
break symmetry, making coordination difficult and leading to
deadlocks [15]. Geometric and model-based methods [16],
[17], [18] have been explored, but conflicting navigation
objectives can still result in deadlock [14]. Reactive collision
avoidance techniques attempt to resolve these issues by
computing admissible velocity sets [19]. However, in highly
constrained environments, robots can overly adjust their
velocities to avoid collisions but ultimately stall [20]. Many
existing approaches remain too conservative to navigate
cluttered environments without deadlock [14].
A. Main Contributions

To address these challenges, we propose a new multi-
robot navigation approach that takes as input point clouds
and produces in real-time safe and deadlock-free trajectories
for fully decentralized robots in cluttered environments.
Key to our approach is a novel universal CBF formulation
that dynamically and simultaneously computes safety and
liveness certificates for the controller. The safety component
of the universal CBF follows the standard CBF definition
commonly employed in the literature [21]. The liveness
component is driven by an interaction function that intel-
ligently breaks deadlock-causing symmetry between agents
in a minimally invasive fashion, and is cast as a CBF. In
summary, our contributions are as follows:

1) A fully decentralized multi-robot navigation algo-
rithm with point cloud input: We introduce a se-
quential control strategy that enables each agent to
dynamically adjust its safety constraints based on real-
time observations of other agents. Each robot processes
point cloud data to construct CBFs while considering
the motion of dynamic obstacles (i.e., other agents) in
a real time, iterative framework.
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2) Synthesizing a universal CBF for safety and live-
ness: We introduce a deadlock prevention mechanism
that quantifies symmetry between interacting agents,
identifying cases where robots are likely to deadlock,
particularly in highly constrained spaces like doorways
When symmetry is detected, we apply minimal veloc-
ity perturbations to proactively break deadlock-prone
configurations while maintaining safety guarantees. By
integrating the deadlock detection mechanism within the
same framework as the CBF constraints, LIVEPOINT
unifies CBF-based safety and deadlock avoidance into a
single cohesive approach, eliminating the need for sep-
arate heuristics or rule-based strategies. Our universal
CBF ensures that each robot not only avoids collisions
but also maintains continuous progress.

II. RELATED WORK

A. Vision-Based Navigation
Traditional vision-based navigation often relies on simul-

taneous localization and mapping-based approaches, such
as occupancy grid methods [22], to construct global maps
for control and planning. While effective in structured envi-
ronments, these methods are computationally intensive and
struggle to adapt in dynamic settings. More recent methods
address some limitations by combining planning and learn-
ing [23], [24], [25], [26]. While such approaches eliminate
the need to do detailed map building, they make non-
universal assumptions [26], [23]. CBFs have also been ex-
plored as an alternative to enforce safety constraints without
full mapping [27], with extensions incorporating learning-
based methods [11] and and Neural Radiance Fields-based
representations [9]. However, these approaches remain lim-
ited by by high computational costs and are generally limited
to static environments. Depth-CBF [8] introduced direct
point-cloud based safe navigation, offering better computa-
tional efficiency and adaptability, but does not account for
multi-robot navigation or coordination.

B. Safety and Liveness in Cluttered Environments
Deadlocks commonly arise in multi-agent navigation due

to symmetry in the environment or trajectory conflicts [15],
[28], [5], [7], [29]. Structured, rule-based strategies such as
the right-hand rule [30] or clockwise rotation [15] improve
performance, but their reliance on predetermined ordering
makes them less generalizable. Other priority-based frame-
works for deadlock resolution are inspired by intersection
management literature [31], such as first-come, first-served
[32]. Such approaches can lead to inefficiencies and con-
gestion, especially when multiple agents arrive simultane-
ously. To bridge the gaps in point-cloud based navigation
and deadlock prevention, we introduce LIVEPOINT, which
efficiently uses point cloud data for safe multi-robot nav-
igation, while incorporating liveness-driven robot velocity
perturbation mechanisms for deadlock-free multi-agent nav-
igation. This approach retains the computational efficiency
and adaptability while addressing the unique coordination
challenges that arise in multi-agent settings.

III. PROBLEM FORMULATION
We address the problem of safe and deadlock-free navi-

gation for multiple robots in a cluttered environment, using
point clouds. We define the problem, mathematically formal-
ize cluttered environments, and state our overall objective.
We first formulate a general multi-agent navigation scenario
using the following partially observable stochastic game
(POSG) [33]:

〈
k,X,U i, T ,J i, Oi,Ωi

〉
. A superscript of

i refers to the ith agent, and a subscript of t refers to
discrete time step t. At any given time step t, agent i has
state xi

t ∈ X . The dynamics of the agents are defined by
the transition function T : X × U i → X , and the cost
function, J i : X × U i → R is used to evaluate a specified
control action for the agent’s current state. Each agent i
also has an observation oit ∈ Ωi which is determined via
the observation function oit = Oi(xi

t, P
i
t ). This observation

function takes in the state of the robot, as well as its perceived
point cloud P i

t , as input, and outputs the observations that
the robot makes. A discrete trajectory of agent i is defined
by Γi =

(
xi
0, x

i
1, ..., x

i
T

)
, and has a corresponding control

input sequence Ψi =
(
ui
0, ..., u

i
T−1

)
. Agents follow discrete

and deterministic control-affine dynamics given by xi
t+1 =

f(xi
t)+g(xi

t)u
i
t, where f, g are locally Lipschitz continuous

functions. At any time t, each agent i occupies a space
given by Ci(xi

t) ⊆ X . A Social Mini-Game (SMG) is
a particular type of POSG and formally characterizes a
cluttered environment.
Definition 1. A SMG occurs if for some δ > 0 and integers
a, b ∈ (0, T ) with b − a > δ, there exists at least one pair
i, j, i ̸= j such that for all Γi ∈ Γ̃i, Γj ∈ Γ̃j , we have

Ci(xi
t) ∩ Cj(xj

t) ̸= ∅ ∀t ∈ [a, b],

where Γ̃i is the trajectory robot i would take in the absence
of any other robots.

The goal of our approach is as follows:
Objective:The optimal trajectory (Γi,∗) and corresponding

optimal sequence of control inputs (Ψi,∗) for the ith robot are
defined as those that minimize the following cost function:

(Γi,∗,Ψi,∗) = arg min
Γi,Ψi

T−1∑
t=0

J i(xi
t, u

i
t) + J i

T (x
i
T ) (1a)

subject to:

Ci(xi
t) ∩ Cj(xj

t) = ∅, ∀i ̸= j, ∀t ∈ [0, T ]
(1b)

∥ui
t∥ > 0, ∀i ∈ {1, ..., k}, ∀t ∈ [0, T − 1]

(1c)

xi
t+1 = f(xi

t) + g(xi
t)u

i
t, ∀t ∈ [0, T − 1]

(1d)

xi
T ∈ xi

g, ∀i ∈ {1, ..., k} (1e)

where xi
g is the goal state region for the ith robot. This

optimization framework ensures that each robot computes
a trajectory that adheres to safety constraints while avoiding
deadlocks and reaching its goal, while minimizing deviation
from its preferred trajectory and maintaining smooth control.

IV. BACKGROUND
A. Control Barrier Functions

CBFs [21] are a mathematical framework used to ensure
system safety while achieving desired control objectives. A
CBF is a scalar function, h(x), defined over the state space of
a system. The safe set, C, is defined as the set of all states for
which h(x) ≥ 0. Ensuring safety involves keeping the system
state within C at all times. This is achieved by designing a
control input, u, such that the following condition is satisfied:

ḣ(x, u) ≥ −α(h(x)), (2)

where ḣ(x, u) is the derivative of h(x), and α is an extended
class K function that ensures the safety constraint is enforced
with appropriate robustness. CBFs are integrated into a
control optimization framework. Since our implementation
operates in discrete time, we reformulate the CBF condition:

h(xt+1)− h(xt) + α(h(xt))∆t ≥ 0. (3)



Fig. 2: Technical flowchart illustrating our multi-agent navigation approach. Our universal safety-liveness certificate processes point cloud
input to generate robot velocities that ensure deadlock-free navigation. Collectively, the blue elements represent one simulation step.

B. Single Robot Navigation with Point Clouds
The Depth-Based Control Barrier Function (Depth-CBF)

framework [8] ensures safety in real-time vision-based navi-
gation by utilizing point cloud data as a direct representation
of the robot’s environment. The robot’s position is denoted
as q, and its environment is represented as a point cloud
P i = {pi}Ni=1, where pi ∈ R2 is a point obtained from
sensors. To define a safety margin, the CBF h(q) is:

h(q) = min
p∈P

{∥q − p∥2 − δ2} (4)

where δ > 0 specifies the minimum safe distance. The
Depth-CBF is incorporated into a Quadratic Program (QP)
to compute safe control inputs while remaining close to a
nominal control input k(q). The QP is formulated as:

u∗ = argmin
u

1

2
∥u− k(q)∥2 (5)

subject to ∇h(q)T (f(q) + g(q)u) + α(h(q)) ≥ 0,

This formulation ensures that the control input u∗ minimally
deviates from the nominal input k(q) while satisfying the
safety constraints imposed by the Depth-CBF.

V. LIVEPOINT: UNIVERSAL SAFETY AND
LIVENESS CERTIFICATES

In this section, we introduce LIVEPOINT for safe and
deadlock-free multi-robot navigation using real-time point
cloud perception in SMGs. To encourage liveness, we present
a deadlock prevention strategy, which quantifies trajectory
symmetry and applies minimal velocity adjustments to main-
tain progress toward goals. We outline the computational
framework that integrates safety constraints and deadlock
prevention into a single, decentralized control policy.

A. Safety
To ensure safe and collision-free navigation, we employ

CBFs to define safety constraints that prevent robots from
colliding with static and dynamic obstacles. These CBF
constraints are derived solely from high-dimensional point
cloud data. At each step, each robot perceives its environment
using point cloud data P i, which allows it to dynamically
compute safety constraints at every time step. With the point
cloud input, we use Equation 4 to find our CBF. Next,
we compute a control input utilizing a modified CBF-QP
controller, formulated using Equation 5.

B. Liveness

Our two-part approach to ensuring deadlock-free naviga-
tion consists of deadlock detection and resolution.

a) Deadlock Detection: At every time step, before any
movement occurs, we check for a potential deadlock using
a liveness function, defined as:

ℓ
(
xi
t, x

j
t

)
= cos−1

(
⟨pjt − pit, v

j
t − vit⟩

|pjt − pit||v
j
t − vit|+ ϵ

)
, (6)

where ℓ ∈ [0, π], and ϵ > 0 ensures a positive denominator.
The liveness function gives the degree of symmetry by
measuring the angle between the relative displacement and
relative velocity of two robots. In cases of near-perfect
symmetry, the angle approaches zero. If ℓij(x

i, xj)(t) ≤
ℓthresh = 0.3, a deadlock is detected.1

b) Deadlock Prevention: If deadlock was detected, our
goal is for robots to decentrally avoid the deadlock by
perturbing its speed in a minimally invasive manner, in a
way that only changes the speed of the robot and not its
planned trajectory or actual positions. In order to inform our
approach, we introduce the concept of liveness sets.

Definition 2. At any time t, given a configuration of k
robots, xi

t ∈ X for i ∈ [1, k], a liveness set is defined
as a union of convex sets, Cℓ(t) ⊆ Rk of joint speed
vt =

[
v1t , v

2
t , . . . , v

k
t

]⊤
such that vit ≥ ζvjt for all distinct

pairs i, j, ζ ≥ 2.

Liveness sets guarantee that if vt ∈ Cℓ(t), any pair of
robots in our configuration will have feasible control inputs
that guarantee forward motion. But if vt /∈ Cℓ(t), then we
must perform a minimally invasive velocity perturbation:

Definition 3. A deadlock-resolving strategy for robot i with
current heading angle θit is minimally invasive if:

1) ∆θit = θit+1 − θit = 0 (The agent does not deviate from the
preferred trajectory).

2) vit+1 = vit + δopt(t), where δopt(t) = argminδ∈R
∥∥vit + δ

∥∥ ,
such that vit+1 ∈ Cℓ(t) (i.e., robot with speed vit+1 prevents
or resolves a deadlock).

δopt(t) found by solving the following optimization problem:

1We formally prove the value of the liveness threshold through
two theorems, which can be found at livepoint-uva.github.io.
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Doorway Scenario

Method Collisions ↓ Deadlocks ↓ Success(%) ↑ Time R1 (s) ↓ Time R2 (s) ↓ Vel R1 (u/s) ↑ Vel R2 (u/s) ↑ |∆V | R1 (u/s) ↓ |∆V | R2 (u/s) ↓
ORCA [34] 50 0 0 N/A N/A 1.4178 1.419 1.971e-02 1.975e-02
MPC-CBF [35] 50 0 0 N/A N/A N/A N/A N/A N/A
MPNet [36] 50 0 0 N/A N/A N/A N/A N/A N/A
Single 50 0 0 N/A N/A 1.248 N/A 2.294e-02 N/A
LIVEPOINT w/o Liveness 50 0 0 N/A N/A 1.1209 1.0953 2.356e-02 2.279e-02
LIVEPOINT 0 0 100 9.12 11.68 1.0332 0.3143 2.446e-02 1.424e-02

TABLE I: Experiment Results for Doorway Scenarios, averaged over 50 runs. The best results for each category are bolded, with ↑
indicating a higher value is preferable, and ↓ indicating a lower value is preferable. N/A indicates failure to reach the goal.

δopt(t) =argmin
δ∈R

∥vit + δ∥, (7a)

vit+1 = vit + δ (7b)

ui
t ∈ U i, ui

t+1 ∈ U i (7c)(
xi
t+1, u

i
t+1

)
/∈ Di(t+ 1) (7d)

where deadlock set Di is defined as follows:

Di(t) =
{(

xi
t, u

i
t

)
: xi

t /∈ Xg, ui
t = 0 for threshold > 0

}
(8)

If each vit ∈ Cℓ(t), then there is no deadlock. If, however,
vt /∈ Cℓ(t), then robot i will adjust vit such that vt is
projected onto the nearest point in Cℓ(t). We establish that
our approach ensures both safety and liveness guarantees.
The use of CBFs inherently enforces safety by ensuring that
the system remains within a certified safe set. To guarantee
liveness, we demonstrate in supplementary material that a
feasible velocity perturbation-based solution always exists
and is unique under reasonable assumptions.
C. Overall Algorithm

Our sequential algorithm is formulated as follows and
illustrated in Figure 2. First, each robot observes its state. The
liveness function (Equation 6) is then computed to determine
whether the robots are at risk of a deadlock. Next, Robot
1 perceives its point cloud, computes its CBF constraints,
and computes its control input and corresponding desired
velocity. If a potential deadlock was detected earlier, the
deadlock resolution procedure is executed as per Equation 7a.
Robot 1 then updates its state. Next, Robot 2 follows the
same process as Robot 1. This process repeats iteratively
until both robots have reached their destinations, a collision
occurs, or maximum time step T is reached.

VI. EXPERIMENTS & RESULTS

We evaluate LIVEPOINT in a Python-based simulation
environment [37], simulating two robots in a constrained
doorway scenario. We conduct the following comparisons:

1) Depth-CBF (Single-Agent) [8]: We utilize Depth-CBF
to control a single robot while treating the second robot
as a dynamic obstacle with predefined positions.

2) LIVEPOINT without Liveness (LoL): This ablation
baseline eliminates our deadlock prevention algorithm.

3) MPC-CBF [35]: Combines Model Predictive Control
with CBFs for collision avoidance, formulating an op-
timization problem over a finite horizon.

4) MPNet [36]: Learning-based motion planner which
uses neural networks to generate paths directly from
raw point cloud data.

5) ORCA [34]: Utilizes safe velocity sets to generate
collision-free motion for multiple agents.

We perform 50 runs and measure key performance metrics,
summarized in Table I. We track the number of collisions or
deadlocks, the percentage of successful runs, the time to des-
tination, the average velocity, and the magnitude of velocity
changes (|∆V |) while navigating through the doorway.

(a) Robots moving to-
wards the opening.

(b) Robot 1 proceeds
first.

(c) Robot 2 follows 1
through the opening.

Fig. 3: Doorway: Multi-Agent Robot Trajectories with Liveness

(a) ORCA [34]. (b) MPC-CBF [35]. (c) MPNet [36].

Fig. 4: Baselines: Multi-Agent Robot Trajectories for ORCA, MPC-
CBF, and MPNet in doorway scenario. Collisions occur for all three.

Figure 3 illustrates the robot trajectories under LIVE-
POINT. Potential deadlocks are detected early, prompting
Robot 2 to reduce its speed and allow Robot 1 to pass through
the doorway first. Once Robot 1 clears the doorway, Robot 2
takes its turn through the doorway. On average, LIVEPOINT
achieves zero collisions and a 100% success rate across 50
runs, significantly outperforming all baselines and ablations.
While LIVEPOINT is not the most agile, an expected trade-
off given its prioritization of safe and deadlock-free naviga-
tion, its reduction in speed is minimal when compared to
other methods. Notably, LIVEPOINT achieves the smoothest
navigation, demonstrating its ability to balance safety and
liveness while maintaining smooth, natural robot movement.2

In our doorway scenario, ORCA, MPC-CBF, and MPNet
lead to collisions, as seen in Figure 4. The results highlight
the limitations of single-agent Depth-CBF, LoL, and other
state-of the-art baselines in constrained multi-agent environ-
ments, while LIVEPOINT overcomes these challenges with
its novel Universal Safety-Liveness Certificate. By ensur-
ing smooth, safe, and deadlock-free navigation, LIVEPOINT
demonstrates scalability and robustness for real-world multi-
agent coordination in dynamic, constrained environments.

VII. CONCLUSION
In this work, we introduced a multi-agent navigation

framework that synthesizes Control Barrier Functions over
point cloud data for safe and deadlock-free navigation in
cluttered environments. The proposed method incorporates
minimal velocity perturbations to resolve potential dead-
locks. The results show that our approach successfully mit-
igates collisions and deadlocks while maintaining smooth
trajectories for multiple agents in complex environments.

2Additional visualizations and results for a second evaluation
scenario (Intersection), can be found at livepoint-uva.github.io.
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